北京科技大学2025年本科教育教学改革项目结题验收结果一览表

序号	项目名称	项目编号	是否通过
1	五育并举理念下一、二课堂"三协同"育人模式探索与实践	JG2021Z01	通过
2	新文科背景下文科专业实训培养模式的研究与实践	JG2021Z02	通过
3	新工科视角下电基础课程群随课实践体系构建与探索	JG2021Z03	通过且优秀
4	百年学科的文化传统内涵与课程思政传承范式	JG2021Z04	通过
5	对标一流本科课程,重构优化《大学物理实验》课程内容体系,建设物理实验金课	JG2021Z05	通过且优秀
6	本研贯通培养模式探索与实践	JG2021Z06	通过
7	支撑双一流学科高水平人才培养的基础实验教学新体系的探索与实践	JG2021Z07	通过且优秀
8	构建"一/三/三/四"创新创业教育模式,助力冶金工程人才培养	JG2021Z08	通过
9	新工科"学-研-创-用"广维复合人才培养链模式探索与实践研究	JG2022M01	通过
10	基于知识图谱的结构力学课程精准教学模式研究	JG2022M02	申请延期
11	后疫情时期土木工程基础实验课思政建设教学改革	JG2022M03	通过
12	新工科背景下土木工程施工课程教学改革	JG2022M04	申请延期

13	智能建造转型中的土木工程新工科课程体系改革	JG2022M05	通过
14	实验教学质量评价体系建立一以冶金工程专业为例	JG2022M06	通过
15	冶金工程专业理-工-文三维融通建设探索实践	JG2022M07	通过
16	数学建模在冶金传输原理课程中的教学实践	JG2022M08	通过
17	工程专业认证背景下《冶金单元设计与操作》课程教学改革研究	JG2022M09	通过
18	新工科建设下的《功能陶瓷与器件》课程改革	JG2022M10	通过
19	以认证促进专业课程实践教学建设	JG2022M11	通过
20	常态化疫情防控条件下材控专业卓越工程人才实践能力培养模式探索	JG2022M12	通过
21	粉末冶金专业方向课程体系的优化	JG2022M13	通过
22	基于批阅效率提升的图纸作业电子管理系统研究与实现	JG2022M14	通过
23	面向机械创新设计实践能力培养的数字化样机设计、仿真与实验一体化教学模式研究	JG2022M15	通过
24	基于学科交叉融合的视觉传达设计专业"人工智能+"课程群构建与教学实践研究	JG2022M16	申请延期
25	数字化环境下的工程制图教学体系研究与实践	JG2022M17	通过
26	混合式教学理念与课程设计方法研究	JG2022M18	申请延期

27	"双碳"背景下面向新能源专业传热传质学教学模式探索	JG2022M19	通过
28	工程教育专业认证背景下《生态修复技术》课程教学改革分析研究	JG2022M20	通过
29	能源与动力工程专业热工基础课程群的课程思政体系构建	JG2022M21	通过
30	面向工程专业认证的热工学教学改革探索	JG2022M22	通过
31	面向新工科建设的《环境监测实验》"三位一体"教学体系改革	JG2022M23	通过
32	基于PBL模式的《暖通工程》教学体系研究与探索	JG2022M24	通过
33	基于"PBL+翻转课堂"《工程流体力学》混合式教学探索与实践	JG2022M25	通过
34	智能类专业建设中强化专业课基础理论知识教学问题的思考	JG2022M26	通过
35	有效构建以问题为导向提高学生工程思维能力的电工学课堂教学改革	JG2022M27	通过
36	面向工程教育认证的《自动控制原理》实验课程教学改革与探索	JG2022M28	通过
37	"一生双师百企千人"视域下的信息学科育人模式改革与实践	JG2022M29	通过且优秀
38	通信网络虚拟仿真实践平台建设	JG2022M30	通过
39	通专融合的计算机工程实践课程体系探索	JG2022M31	通过
40	基于项目驱动的多平台网络工程实验教学模式研究	JG2022M32	通过

41	面向新工科教育的软件实训项目管理和分析一体化平台	JG2022M33	通过
42	学科竞赛和专业认证联合驱动的信息安全人才培养方法研究	JG2022M34	通过
43	新时期高校基础学科拔尖人才培养模式和管理体系研究——以北京科技大学理科试验班为例	JG2022M35	通过且优秀
44	研究型教学模式在"运筹学"课程中的探索与研究	JG2022M36	通过
45	面向新工科建设的固体物理教学改革研究与实践	JG2022M37	通过
46	新时期新形势下,《工科物理实验》设计性(研究性)实验的研究与探索	JG2022M38	通过
47	基于《无机化学实验》探索"金课"建设	JG2022M39	通过
48	"三融合,四突出"教学路径探索	JG2022M40	通过
49	可持续发展的内生式产教融合生态系统的探索与构建	JG2022M41	通过
50	基于工程思维与创新思维的文本挖掘课程教学改革与实践	JG2022M42	通过
51	基于语料库数据驱动的学术英语阅读与写作能力的培养	JG2022M43	通过
52	新时代背景下中国大学生跨文化交际能力提升路径探索与实践	JG2022M44	通过
53	行政管理专业本科生职业导航计划	JG2022M45	申请延期
54	基于公共服务逻辑的行政管理专业人才培养模式创新研究	JG2022M46	通过

55	以中国红色经典歌剧课程拓展理工科高校"大思政课"理论与实践研究	JG2022M47	通过
56	中华优秀传统文化融入高校思政课教学探究——以"思想道德与法治课"为例	JG2022M48	申请延期
57	以学生为中心的"大思政课"改革优化方案探索——以《马克思主义基本原理》课 为例	JG2022M49	通过
58	大思政视野下习近平新时代中国特色社会主义思想教学改革与效果提升研究	JG2022M50	通过
59	基于金课建设的户外教育教学改革与实践	JG2022M51	通过
60	工程教育认证理念下的无机化学实验课程的教学改革	JG2022M52	通过
61	新工科背景下《数字电子技术实验》混合式教学改革与实践	JG2022M53	通过
62	冶金专业继续教育教学数字化课程设计和建设	JG2022M54	通过
63	MOOC教学中教师呈现对大学生学习效果影响的知识发现	JG2022M55	通过
64	坚持"实践自导"、遵循"两性一度"的扫描电镜实验课程改革与实践	JG2021M13	通过
65	生产实习"虚实融合"强化工程实践创新人才培养	JG2021M24	通过
66	新工科背景下的人工智能专业机器人类实践课程改革研究	JG2021M29	通过
67	面向新工科的《电力电子技术》课程改革	JG2021M30	通过
68	新文科背景下给基于大数据的工科特色口译课程实践与研究	JG2021M43	不通过

69	"思政"如何通过"实践"走入"课程"——场景叙事法在《工程伦理与思想道德》教学中的引入与探索	JG2021M47	通过
70	专业学习社群与自主互助学习能力建设——新文科背景下的专业教育教学改革探索	JG2021M48	通过
71	国际学生校园融入现状研究——基于《科技汉语》的课程设计分析	JG2021M49	通过
72	数学建模竞赛背景下《数学实验》	JG2021M53	通过
73	新工科背景下冶金工程专业"研究性-渗透式"实验教学模式探索	JG2021M15	通过
74	量子力学实践课程的"多层级、差异化"改革	JG2021M07	通过
75	材料学科 "微课"+线下透射电镜实验教学模式的探索	JG2021M12	通过
76	融合现代数学思想的《偏微分方程》教学研究与实践	JG2021M38	通过
77	素质教育理念下化学实验课程的过程式、多元化教学评价体系探索	JG2020M55	通过